什么是人类最重要的智能行为?
中国科学院院士、中国科学院自动化研究所研究员谭铁牛就在现有的研究基础上,得出一个结论:“模式识别”是人类最重要的智能行为,也是人工智能重要的研究内容——机器的“模式识别”能力,在一定程度或者很大程度上反映了机器智能“类人”的程度。
在当天的论坛上,谭铁牛举了几个模式识别的例子。比如语音识别,近些年突飞猛进的科大讯飞,能将维吾尔语翻译成汉语,汉语翻译成维吾尔语;再如步态识别,在看不到人脸、虹膜和指纹的时候,就能通过步态在几十米外感知到其身份。
此外,还有图像识别,其中具有代表性的人脸识别,早在几年前马云刷脸支付已经引爆舆论热点。谭铁牛本人就在进行虹膜识别的研究,并建立了目前国际上规模最大的共享虹膜图像库,被多国共享使用。他说,这不仅可以用在手机上,还可在查找丢失儿童上发挥作用。
谭铁牛说,模式识别的技术瓶颈可通过借鉴生物的机理改进,未来生物启发的模式识别在人工智能领域前景可期。其最终追求,是希望模拟逼近人的模式识别,这是非常艰巨的过程。
他也提到,模式识别的主要瓶颈在于鲁棒性、自适应性和可泛化性。
鲁棒性,说白了,就是人工智能“够不够皮实”“是不是稍微有点扰动,就会出错”。谭铁牛举了一个例子,比如在酒会上聊天,背景噪音比较多,如果想听清其中某一个人的声音,就要忽略或者抑制背景中其他对话的干扰——人类可以做到这一点,也就是听觉系统所谓的鸡尾酒效应,但人工智能可以吗?
所谓自适应性,则比较容易理解,谭铁牛说,人类的眼睛会随着灯光的变化、环境的变化进行调整,这说明自适应性非常强。这一点可以应用到人工智能上,比如人脸识别,有一位朋友十几年甚至几十年没见,再见面是否还能认出来?他说,现有的模式识别在这方面还不是很理想。
可泛化性,说白了就是“举一反三”。谭铁牛说,当小孩认识苹果后,即便只记住了一次,也可以识别其他类型的苹果,这说明人类看到一个东西后,不仅知其然,还知其所以然。而知其所以然,就是人工智能领域所说的“深度学习”。但目前的人工智能深度学习,必须建立在大量数据的基础之上,这一点也有待进一步研究。
谭铁牛说,要解决这3个问题,关键还是看人类本身,在微观层面上,人工智能的模式识别可借鉴人类的神经元,神经元有兴奋性、抑制性、功能可塑性和传播性。科学家受到这个启发,增强了模式识别动态系统的稳定性。
推荐